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1 Introduction

The swimming of microscopic organisms has been a rich source of research for decades
[1,2]. A natural extension of this research is the design of artificial microswimmers, which
could be applied to targeted medication delivery or the autonomous pumping of fluid [3,4].
Biological systems have inspired many of the resulting designs, such as swimmers which
mimic spermatozoa by waving a filament under the influence of an external magnetic
field [5]. The minimum size of the propulsive filaments required to swim in this way is
limited by manufacturing constraints, so miniaturizing the concept is di�cult.

Another design, the Janus particle, swims without any mechanical parts or body
deformation through a process called self-di↵usiophoresis. Named for the Roman two-
faced god, the Janus swimmer catalytically reacts with the surrounding fluid di↵erently
on each of its two sides, asymmetrically emitting solute into the surrounding fluid [6].
This induces an e↵ective slip velocity over the particle’s surface, resulting in movement
without the need for an outside energy source [7]. The design can be fabricated by coating
one or both halves of a sphere with varying catalytic substances, a procedure which, even
at small length scales, is within the reach current manufacturing techniques [8].

The potential applications for microswimmers listed above imply their presence in
confined environments such as capillaries or channels, but designing robotic swimmers
capable of such tasks will require a much better understanding of the e↵ects of confine-
ment on swimmer motion. Janus particles, given their lack of outside actuation and
suitability for miniaturization, are an excellent candidate for further development and
have been frequently studied in recent years [3, 4, 6, 8–13]. While experiments and simu-
lations demonstrate rich, varied multi-particle dynamics [9], even single particles display
complex behavior when swimming near a boundary [4].

This essay will investigate confinement e↵ects on isolated Janus particles by examining
analytical treatments of the swimmers near planar walls, specifically the work of Ibrahim
and Liverpool [13] and Crowdy [10]. It will be shown that confinement produces two
e↵ects on Janus particles which dominate the interaction. A leading-order repulsion from
the boundary is caused by the wall’s influence on the solute distribution around the
particle, while a rotation of the particle away from the wall is induced by hydrodynamic
e↵ects. This combination causes an avoidance of confinement, although certain particle
configurations may be susceptible to capture along the wall. A detailed outline follows.

In Section 2, the process of self-di↵usiophoresis will be explained in detail, and several
results which inform the rest of the essay will be derived. Section 3 will reproduce the
work of Golestanian, Liverpool and Ajdari [6] and Ibrahim and Liverpool [13] by exam-
ining the motion of a three-dimensional Janus particle in unbounded fluid and near a
wall. This analysis will yield several conclusions, but will be unable to explain certain
behaviors which have recently been observed in numerical simulations [4]. To rectify this,
Section 4 will draw on the work of Crowdy [10] to find an exact solution to the problem in
two-dimensions, using complex variables and conformal mapping. The process will yield
indirect evidence for the numerical observations. In Section 5, I will use conformal map-
ping to non-rigorously extend Crowdy’s solution to more general environments. Finally,
Section 6 will discuss several conclusions and opportunities for future research.
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Figure 1: The process of self-di↵usiophoresis is illustrated for a spherical Janus particle
which emits solute at a fixed rate from its left face. Solute is more concentrated on the
particle’s left because of the unbalanced emission. This asymmetry induces a surface
velocity us, causing the particle to move through the surrounding fluid at velocity U .

2 Principles of Self-Di↵usiophoresis

In this section, the concept of self-di↵usiophoresis will be explained in detail. A char-
acteristic example of the process is presented in Fig. 1, which depicts a swimmer that
releases solute at a fixed rate from half of its surface. The resulting concentration gradient
induces an e↵ective slip velocity over the particle surface, causing translation. Several
results to be applied in later sections are derived as follows.

First, since microswimmers exist at small scales, we will apply the work of Taylor [1]
and Purcell [2] to show that inertial e↵ects can be neglected. In doing so, we will derive
the Stokes flow equations. As in Stone and Samuel [14], these equations will yield the
reciprocal theorem of Stokes flow, which explicitly relates a particle’s motion and the
fluid velocity imposed on its surface. Finally, we follow Anderson [7] to derive the slip
velocity over a particle induced by a concentration gradient at its surface.

2.1 Stokes Flow Equations

In this essay, we consider artificial swimmers at small length scales, so inertial e↵ects
are neglected as discussed by Taylor [1] and, later, Purcell [2]. The surrounding fluid
is governed by the Stokes flow equations, derived in this section. We will see that the
motion of any small swimmer depends only on the instantaneous velocity distribution
imposed on its boundary.

General Fluid We begin by considering Newtonian, incompressible fluid of density ⇢
and dynamic viscosity µ. Given the velocity and pressure distributions u and p, we write
the stress and rate-of-strain tensors

� = �pI + 2µe, e =
1

2

h
ru+ (ru)T

i
. (2.1)
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The stress exerted on fluid across a boundary with outward normal n̂ is equal to � · n̂.
Such fluid is described by the well known Navier-Stokes equations r · u = 0 and

⇢

✓
@u

@t
+ u ·ru

◆
= f �rp+ µr2u. (2.2)

This latter relation is simply a momentum balance: the left side represents acceleration,
and the right side is the sum of body forces f and surface forces r · �.

We use velocity and length scales U and L to non-dimensionalize (2.2), obtaining

✓
⇢U2

L

◆✓
@u

@t
+ u ·ru

◆
=

✓
µU

L2

◆�
f �rp+r2u

�
, (2.3)

where µU/L has served as a pressure scale and L/U as a time scale. The bracketed
numbers on the left and right sides of (2.3) are typical scales for the inertial and viscous
forces in the fluid. Their ratio, the Reynolds number, is

Re :=
strength of inertial forces

strength of viscous forces
=

⇢UL

µ
. (2.4)

Small Length Scales The Reynolds number satisfies Re ⌧ 1 at small length scales,
indicating inertial forces are completely dominated by viscous forces. In that case, we
neglect the left side of (2.2) to obtain the Stokes flow equations r · u = 0 and

µr2u = rp� f . (2.5)

In Stokes flow, the fluid and any submerged particles are always in quasi-static equi-
librium, since there are no time derivatives in (2.5). Particle motion is completely deter-
mined by the Stokes flow equations and imposed surface velocity distribution.

2.2 Reciprocal Theorem of Stokes Flow

In this section, we follow the work of Stone and Samuel [14] to derive the reciprocal
theorem of Stokes flow. We use this result to relate a particle’s imposed boundary velocity
distribution us to the corresponding swimming velocities U and ⌦.

Derivation We consider two hypothetical Stokes flows u1 and u2, describing the motion
of fluid which has viscosity µ and occupies some volume V , enclosed by the surface S.
We introduce the quantity 2µe1 : e2, where ek is the rate-of-strain tensor associated with
uk, and integrate this value throughout the fluid domain. After finding

2µ

Z

V

e1 : e2 dV =

Z

S

u2 · �1 · n̂ dS +

Z

V

u2 · f1 dV, (2.6)

we note that the integrand’s value is unchanged by swapping the indices 1 and 2. Applying
the switch to the right side of (2.6) yields the reciprocal theorem,

Z

S

u1 · �2 · n̂ dS +

Z

V

u1 · f2 dV =

Z

S

u2 · �1 · n̂ dS +

Z

V

u2 · f1 dV. (2.7)
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Velocity Calculation Now, we find the motion induced by an imposed boundary
velocity distribution. Note that, in the preceding derivation, the unit normal n̂ was
assumed to point out of the fluid. We adopt this convention until stating otherwise.

Consider a particle with boundary S, and let u1 and u2 be two possible Stokes flows
around it. We assume both are free of body forces so that f1 = f2 = 0.

First Flow Assume the particle induces the boundary velocity distribution us in
its own frame of reference, and that no outside force acts on the particle so that no net
force or moment is applied to the particle by the fluid. If we denote the particle velocity
U and angular velocity ⌦, then the resulting global flow u1 satisfies

u1(r)
��
r2S = U +⌦⇥ r + us, 0 =

Z

S

�1 · n̂ dS, 0 =

Z

S

r ⇥
⇣
�1 · n̂

⌘
dS, (2.8)

where r is the position vector originating at the particle center of mass.

Second Flow Assume the particle is being towed by the external force F 0 and
moment M 0, so that it translates at U 0 and rotates with ⌦0. Since Stokes flows are
quasi-static, the particle experiences a drag force �F 0 and moment �M 0 exerted by the
fluid. If we impose a no-slip condition on the particle, then the global flow u2 satisfies

u2(r)
���
r2S

= U 0 +⌦0 ⇥ r, F 0 =

Z

S

�2 · n̂ dS, M 0 =

Z

S

r ⇥
⇣
�2 · n̂

⌘
dS. (2.9)

Theorem Application Applying the reciprocal theorem (2.7) yields

U · F 0 +⌦ ·M 0 = �
Z

S

us · �2 · n̂ dS. (2.10)

In the case of a spherical particle of radius R, it is known that the second flow satisfies

�2 · n̂ =
F 0

4⇡R2
+

3 (M 0 ⇥ r)

8⇡R4
. (2.11)

Applying this to (2.10) yields the relation

F 0 ·

U +

1

4⇡R2

Z

S

us dS

�
+M 0 ·


⌦+

3

8⇡R4

Z

S

r · us dS

�
= 0. (2.12)

Since this expression is true for arbitrary F 0 and M 0, the bracketed quantities must be
zero. A sphere with outward normal n̂ and the boundary velocity us must swim with

U = � 1

4⇡R2

Z

S

us dS, ⌦ = � 3

8⇡R3

Z

S

n̂⇥ us dS. (2.13)

Two Dimensions In two dimensions, the well known “Stokes paradox” states that
the dragging flow u2 does not die o↵ at infinity, instead diverging at O (log |r|). This
is concerning, but it is shown by Squires and Bazant [15] that the reciprocal theorem
can be applied just as in the previous section. While the dragging flow is unphysical, it
nonetheless satisfies the Stokes equations so that the analysis is valid.
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With this conclusion, we calculate the swimming speed of a circular particle. The
analysis is the same as in the previous section, except that we let M 0 = 0 and the
dragging flow satisfies �2 = F 0/2⇡R. Since the first flow is force-free, it dies o↵ at
infinity, and only integrals on the particle surface contribute. This yields the velocity

U = � 1

2⇡

Z 2⇡

0

us d✓, (2.14)

where ✓ parametrizes the particle boundary.
We have derived the relationship between a particle’s motion and the velocity distri-

bution on its surface. In the next section, we will show how such boundary velocities are
induced by gradients in the solute distribution around the particle.

2.3 Gradient-Induced Slip Velocities

Janus particles swim by catalytically reacting with fluid in an asymmetric way, so that
gradients are produced in the surrounding solute concentration. This process induces
a tangential slip velocity over the particle surface, resulting in self-propulsion. In this
section, we find an explicit representation for the boundary velocity given the bulk con-
centration distribution, as outlined by Anderson [7].

Geometry Consider a small, rigid particle of length scale R surrounded by solute of
varying concentration c. We divide the fluid into two regions. The “inner region” is a
boundary layer of thickness � satisfying the no-slip condition on the particle’s surface.
The “outer region” comprises the rest of the fluid. We examine the inner region first.

Inner Region We assume the boundary layer is thin compared to the particle, so that
� ⌧ R. As we investigate the inner region, we approximate the particle surface as planar.

Concentration Distribution Let ẑ denote the direction normal to the particle’s
surface. The solute experiences a combination of dipole and van der Waals forces and
excluded volume e↵ects, which are represented by the potential energy �(z), such that
the expected force on individual solute molecules is hFmoli = ��0(z)ẑ. The vertical
variation of the solute concentration is described by the Boltzmann distribution

c(x, y, z) = cs(x, y)e
��(z)/kT , (2.15)

where cs is the concentration on the outer edge of the boundary layer, z ! 1.

Momentum Balance The mean molecular force transmits to the fluid as a body
force f = �c hFmoli. Since both length scales �, R are small, we obtain

rp+ c �0(z)ẑ = µr2u (2.16)

from the Stokes flow equations (2.5). Without loss of generality, we choose for the hori-
zontal component of u to lie along x̂, so that we may omit consideration of uy.
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Scalings Since the boundary layer is thin, we assume derivatives there scale as

@

@x
⇠ 1

R
⌧ 1

�
⇠ @

@z
, (2.17)

which suggests that we can approximate the Laplacian as r2 ⇡ @2/@z2. We find the
relative scaling of the velocity components by applying this relation to incompressibility,
indicating uz/� ⇠ ux/R, and examine the vertical and horizontal components of (2.16).

The horizontal momentum balance indicates that the pressure scales as

p ⇠ µux

�

✓
R

�

◆
⇠ µuz

�

✓
R

�

◆2

. (2.18)

This immediately shows the vertical component of viscous force to be much smaller than
the vertical pressure gradient, as

p

�
� µuz

�2
. (2.19)

The dominant vertical balance is therefore between the pressure gradient and solute/particle
interaction body force. This gives the vertical and horizontal relations

@p

@z
+ c

d�

dz
= 0,

@p

@x
� µ

@2ux

@z2
= 0, (2.20)

which can be solved to find the flow within the interfacial boundary layer.

Interfacial Flow We combine (2.15) and the vertical part of (2.20) to obtain the
pressure distribution

p = cs(x, y)kT e��(z)/kT . (2.21)

We substitute this into the horizontal part to find the velocity distribution which satisfies
the no-slip condition at z = 0,

uh(z) =


�kT

µ

Z z

0

z0
⇣
e��(z0)/kT � 1

⌘
dz0

�
r2Dcs, (2.22)

where we have allowed the velocity to point anywhere in the x̂-ŷ plane. The flow at the
interface between the regions is given by limz!1 uh(z).

Outer Region Now, we turn our attention to the outer region. Since � ⌧ R, we make
the approximation that the inner region is infinitesimally thin, and the interfacial velocity
above exists directly on the particle surface as a tangential slip velocity us.

Slip Velocity We express the slip velocity us = limz!1 uh(z) from the perspective
of the outer region by noting that, on the particle boundary with outward normal n̂, the
planar gradient in (2.22) is given by r2Dcs =

�
I � n̂n̂

�
·rc. In addition, the bracketed

quantity depends on environmental factors such as temperature, viscosity, and details of
the solute/particle force. For ease of notation, we define the “surface mobility”

M := �kT

µ

Z 1

0

z
�
e��(z)/kT � 1

�
dz, (2.23)

and write the slip velocity in the form

us = M
�
I � n̂n̂

�
·rc. (2.24)
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Figure 2: A Janus particle with symmetry axis û. The surface activity and mobility A
and M depend only on the polar angle ✓. On the upper hemisphere, they are equal to
the constant values A+ and M+. On the lower hemisphere, they are A� and M�.

Concentration Distribution Finally, we consider the evolution of solute in the
bulk as outlined by Golestanian et al. [6], which takes the form

@c

@t
+ u ·rc = Dr2c. (2.25)

We non-dimensionalize with velocity, concentration and length scales U, C and L to find
✓
UC

L

◆✓
@c

@t
+ u ·rc

◆
=

✓
DC

L2

◆
r2c, (2.26)

where L/U has served as a time scale. The bracketed numbers on the left and right are
scales for advective and di↵usive solute transport rates; their ratio, the Péclet number, is

Pe :=
advective transport rates

di↵usive transport rates
=

UL

D
. (2.27)

For the remainder of this essay, we assume Pe ⌧ 1 and neglect the left side of (2.25).
In that case, the concentration distribution is harmonic, and the solute is in quasi-static
equilibrium, like the surrounding fluid. We complete the analysis by defining the “surface
activity” A, which measures the rate of emission or absorption of solute per unit area on
a boundary. With this boundary condition, the solute distribution is determined by

r2c = 0, n̂ ·rc = �A

D
, (2.28)

where positive values of A correspond to the emission of solute. For simplicity, we assume
that A at each point on the particle surface is constant.

Using this notation, we define Janus particles more explicitly. Consider a sphere
which has axisymmetric activity and mobility distributions A and M on its surface. If
the activity distribution A is not symmetric above and below the equator, the solute
emission is two-faced and the sphere is a Janus particle. Examples are shown in Fig. 2,
where A and M are constant on each hemisphere, and Fig. 1, where A is positive and
zero on the left and right hemispheres, respectively. We extend the definition to circular
particles in two-dimensional environments.
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3 Case Studies, Three Dimensions

In the following case studies, we will explicitly relate a Janus particle’s activity and
mobility distributions A and M to its motion through unbounded fluid by applying the
relations derived in the preceding section. We will also investigate the general e↵ects of
confinement by considering a Janus swimmer near an infinite planar wall.

First, in this section, we will consider the three-dimensional case of a spherical Janus
particle. The exact solution to the swimmer in unbounded fluid will be outlined by
Golestanian et al. [6], and we will consider an approximate treatment for the swimmer
near a wall developed by Ibrahim and Liverpool [13]. While the approximation will shed
light on some confinement e↵ects, it will be unable to explain certain behavior observed
in numerical simulations by Uspal, Popescu, Dietrich and Tasinkevych [4].

In the following section, we will consider the two-dimensional case of a circular particle.
We will see that both the unbounded and confined cases can be solved exactly using a
complex approach employed by Crowdy [10]. Using this method, the solution will be
attained for a more general particle configuration, revealing indirect evidence for the
observed numerical behavior.

3.1 Unbounded Fluid

This section reproduces the work of Golestanian et al. [6] to calculate the swimming
speed of a spherical Janus particle in unbounded fluid. Let the boundary of the particle
be S, and let its radius R be small so that the Stokes flow equations apply. Given the
surface activity and mobility distributions A and M , we solve Laplace’s equation to find
the bulk concentration distribution c at zero Péclet number, fixing the slip velocity us

and particle swimming speed U . The relevant conclusions from the previous section are

U = � 1

4⇡R2

Z

S

us dS, ⌦ = � 3

8⇡R3

Z

S

n̂⇥ us dS, (2.13)

us = M
�
I � n̂n̂

�
·rc, (2.24)

r2c = 0, n̂ ·rc = �A

D
. (2.28)

Note that, for activity and mobility scales A0 and M 0, the swimming speed scales as
U ⇠ A0M 0/D and is independent of particle size. This is a consequence of the fixed-flux
boundary condition and is not generally true in physical systems, where A can depend
on the local and global distribution of fuel sources.

General Configurations Let the particle symmetry axis û = ẑ so that ✓ is the polar
angle of spherical coordinates, as shown in Fig. 2. We write the activity and mobility
distributions in terms of the Legendre polynomials,

A(✓) =
1X

k=0

AkPk(cos ✓), M(✓) =
1X

k=0

MkPk(cos ✓). (3.1)

Note that the surface geometry of the particle is completely determined by {Ak}, {Mk}.
Given these coe�cients, we solve (2.28) to obtain the concentration distribution

c = c0 +
R

D

1X

k=0

Ak

k + 1

✓
R

r

◆k+1

Pk(cos ✓). (3.2)
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Since this relation depends only on r and ✓, we compute the tangential portion of its
gradient using the polar component of the gradient operator in spherical coordinates,

(I � n̂n̂) ·rc
���
r=R

=
✓̂

r

@c

@✓

����
r=R

= � ✓̂

D sin ✓

1X

k=0

Ak [cos ✓Pk(cos ✓)� Pk+1(cos ✓)] . (3.3)

Substituting this value into (2.24), and applying the recurrence relation

(2k + 1)⇣Pk(⇣) = (k + 1)Pk+1(⇣) + kPk�1(⇣), (3.4)

returns the tangential slip velocity

us = � ✓̂

D sin ✓

1X

k=0

1X

l=0

AkMl

✓
k

2k + 1

◆
[Pk�1(cos ✓)Pl(cos ✓)� Pk+1(cos ✓)Pl(cos ✓)]

(3.5)
The motion of the particle is given by (2.13), but ⌦ = 0 due to azimuthal symmetry.

For the same reason, when we calculate the velocity by integrating (3.5) over the sphere’s
surface, only the vertical portion of the integral contributes, yielding

U = � ẑ

2

Z ⇡

0

(us · ẑ) sin ✓ d✓. (3.6)

After applying ✓̂ · ẑ = � sin ✓, and the orthogonality relation

Z 1

�1

Pn(⇣)Pm(⇣)d⇣ =

✓
2

2n+ 1

◆
�nm, (3.7)

the swimming speed simplifies to

U = � ẑ

D

1X

k=0

✓
k + 1

2k + 3

◆
Ak+1


Mk

2k + 1
� Mk+2

2k + 5

�
. (3.8)

This is the explicit dependence of the particle swimming speed on the surface patterning,
expressed in the coe�cients {Ak} and {Mk}.

Two Hemispheres Configuration The most important case of surface patterning to
investigate is the two hemispheres configuration pictured in Figs. 1 and 2, where A and
M are constant on each half of the sphere so that

A(✓) =

(
A+, 0 < ✓ < ⇡/2

A�, ⇡/2 < ✓ < ⇡
, M(✓) =

(
M+, 0 < ✓ < ⇡/2

M�, ⇡/2 < ✓ < ⇡
. (3.9)

Recall that this design can be fabricated using current manufacturing techniques, in which
one or both hemispheres are coated in materials of varying catalytic properties [8].

We compute the swimming speed by introducing ⇣ = cos ✓ and writing

A(⇣) = A� +
�
A+ � A��H(⇣), M(⇣) = M� +

�
M+ �M��H(⇣), (3.10)

where H(⇣) is the Heaviside step function. Consider the decomposition of H(⇣) into the
Legendre coe�cients {Hk}. Given the shape of the function, H0 = 1/2 must be the only
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M+ +M� > 0

Figure 3: A Janus swimmer with positive mobility swims away from the hemisphere with
higher surface activity, as shown above. A swimmer with negative mobility does the
opposite, swimming towards the source hemisphere (not shown).

non-zero even coe�cient. Every even Ak and Mk with k > 0 must be zero as well. This
implies the k = 0 term in (3.8) is the only contributor to the swimming speed, yielding

U = �M0A1ẑ

3D
. (3.11)

Since the Legendre polynomials are orthogonal as in (3.7), we apply

fk =
2k + 1

2

Z 1

�1

f(⇣)Pk(⇣)d⇣, (3.12)

to determine the coe�cients

M0 =
M+ +M�

2
, A1 =

3

4

�
A+ � A�� , (3.13)

and the two-hemispheres swimming speed

U =
ẑ

8D

�
M� +M+

� �
A� � A+

�
. (3.14)

Discussion

Swim Direction For positive average mobility, the particle tends to swim in the
opposite direction of the hemisphere with higher activity, as shown in Fig. 3 and, earlier,
Fig. 1. The reverse is true if the average mobility is negative. For the remainder of the
essay, when referring to the “nose” or “tail” of a particle, we do so under the assumption
of positive mobility unless specifically noted otherwise.

Solute Source vs. Dipole E↵ects The swimming speed scales with A1, which
quantifies the di↵erence in activity between the two hemispheres, not the average activity
A0. Eq. 3.2 shows that, in the multipole expansion of the concentration distribution, A0

and A1 measure the strengths of the O(r�1) source and O(r�2) dipole terms, respectively.
In the special case where A0 = 0, the source term vanishes and the dipole function

becomes leading-order. For identical A1, this recovers the same U as a particle with
nonzero A0, despite a qualitative di↵erence in their concentration far-fields. We conclude
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that the unbounded swim speed does not depend on whether an unbounded particle is a
net source of solute. This is not the case near a wall, where the solute far-field interacts
with the confining geometry. This is explicitly shown in the next section, as Ibrahim and
Liverpool [13] show the dominant wall e↵ect on Janus swimmers scales with A0, not A1.

Approximations to Surface Geometry General distributions of A and M can
be replaced with approximations to simplify the resulting solute distribution and global
flows. The two-hemispheres model is approximated by the linear activity function

A(⇣) =

✓
A+ + A�

2

◆
+

3

4

�
A+ � A�� ⇣, (3.15)

which yields the correct swimming speed (3.14). It follows from (3.2) that the approx-
imate bulk concentration distribution is accurate to O(r�2) and terminates after two
terms; this is much simpler to work with than the true distribution function, which is an
infinite series. Unfortunately, the slip velocity (3.5) remains an infinite series.

Studying particles with constant mobility avoids this problem. For M = M0, any
activity pattern {Ak} can be approximated by the function A(⇣) = A0 + A1⇣ to obtain
the correct swim speed and convenient, two-term representations of the concentration
and slip velocity. Ibrahim and Liverpool [13] use this approach in the next section.

3.2 Near Infinite Wall

In this section, we apply an approximation developed by Ibrahim and Liverpool [13] to
find the leading-order e↵ects of a planar wall on the motion of a nearby Janus particle.
After introducing the unbounded solution from the previous section, we add image sin-
gularity systems at unphysical locations to satisfy boundary conditions on the wall and
swimmer surface. The values of the image systems evaluated on the particle boundary
can be translated into velocity and rotation corrections through the reciprocal theorem.

Surface Geometry Consider a particle of the two-hemispheres configuration with con-
stant mobility M+ = M� = M0 and one inert face, so that A+ = 0 as in Fig. 1. As
discussed, the solute concentration and surrounding flow are greatly simplified by ap-
proximating the piecewise activity distribution with the linear function A(⇣) = A0+A1⇣.

If we allow the particle symmetry axis û to vary, then the unbounded solute distri-
bution, slip velocity and swim speed are given by (3.2), (3.5) and (3.8) to be

c(0) = c0 +
A0R

D

✓
R

r

◆
+

A1R

2D

✓
R

r

◆2

û · r̂, (3.16)

u(0)
s =

M0A1

2D

�
I � n̂n̂

�
· û, (3.17)

U0 = �M0A1

3D
û, (3.18)

where n̂ is the particle’s outward normal. After noting u(0) = U +us on r = R, we solve
the Stokes flow equations to find the bulk flow

u(0) =
M0A1

6D

✓
I

r3
� 3rr

r5

◆
· û. (3.19)
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hh
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FLUID
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(UNPHYSICAL)

Figure 4: The particle sits at a distance h from the wall, and the tilt angle between its
symmetry axis û and ŷ is ⇥. During the analysis, the image solute and velocity systems
c(1) and u(1) are placed at the unphysical position O0 (x = �2h) to satisfy boundary
conditions on the wall. Similarly, the image systems c(2) and u(2) are placed at the
particle center O (x = y = 0) to satisfy the boundary conditions on the particle surface.

We assume M0A1 < 1 so that U0 lies along û. In keeping with our assumption of
positive mobility, A1 < 1 and the inert face acts as the nose of the particle.

Wall Geometry The geometry of the problem is illustrated in Fig. 4. Fixing the
origin at the particle center as before, we let the wall lie parallel to the ŷ axis on the line
x = �h. Denoting ⇥ as the tilt angle between the symmetry axis û and ŷ, we decompose
û into component vectors ûk = cos⇥ ŷ and û? = � sin⇥ x̂. Finally, we introduce the
parameter " = R/h, such that " ⌧ 1 when the particle is far from the wall.

Image Systems We introduce concentration and velocity singularity systems at the
unphysical locations x = �2h (the particle’s mirror image across the wall) and x = y = 0
(the particle center), to satisfy boundary conditions on the wall and particle surface. On
the wall, these are no solute flux and no fluid slip; on the particle, they are no fluid flux
and the fixed-flux solute condition from (2.28).

Solute Distributions We satisfy the no-flux solute condition on the wall by intro-
ducing the mirror image of the unbounded concentration distribution across the wall,

c(1) =
A0R

D

✓
R

r0

◆
+

A1R

2D

✓
R

r0

◆2 �
ûk � û?� · r̂0, (3.20)

where r0 = r+ 2hx̂ is the position vector from the image location. The sum c(0) + c(1) is
exactly symmetric about the wall, so there is no normal gradient and no solute flux.

By introducing c(1), we have violated the fixed-flux boundary condition on the swim-
mer. Taylor expanding about the particle center gives the normal gradient of the image

12



solute to be n̂ ·rc1 = n̂ ·rc1(0) +O ("4), and we calculate

rc(1)(0) =
A0

16D


�4"2x̂+

A1"3

A0

�
2û? + ûk�

�
. (3.21)

To satisfy the fixed-flux boundary condition, we introduce the second image system c(2)

at the particle center, such that n̂ ·rc(1) = �n̂ ·rc(2). This is satisfied by

c(2) =
A0R

32D

✓
R

r

◆2 
�4"2x̂+

A1"3

A0

�
2û? + ûk�

�
· r̂. (3.22)

By introducing c(2), we have again violated the no flux condition on the wall. While
this process can be repeated to find the concentration as a power series in ", such that
c = c(0) + c(1) + c(2) + · · · , we will stop here.

Surrounding Flows At this point, we repeat the above process for the surrounding
flow. The unbounded solution u(0) is a source-dipole singularity centered at the origin.
Many techniques at low Reynolds number, such as slender-body theory, involve distri-
butions of fundamental singularities. Since these analyses are often conducted near a
planar wall, the corresponding image systems which satisfy the no-slip condition have
been derived for many flows, as in Blake and Chwang [16]. If we define the tensors

G(r) = R

✓
I

r
+

rr

r3

◆
, D(r) =

R3

2

✓
3rr

r5
�

I

r3

◆
, (3.23)

then the singularity system at x = �2h which yields no fluid slip on the wall is

u(1) = D(r0) ·
⇣
U k

0 � 3U?
⌘
� 2h (x̂ ·r)D(r0) ·

⇣
U k

0 �U?
0

⌘

+R2
⇣
U k

0 ·r
⌘
(x̂ ·r)G(r0) · x̂�R2 (x̂ ·r) (ŷ ·r)G(r0) ·U?

0 , (3.24)

where r0 = r + 2hx̂ and U k
0 = U0 cos⇥ ŷ, U?

0 = �U0 sin⇥ x̂.
As before, in introducing u(1) we have violated the no fluid flux condition on the

particle surface. While we nominally introduce a flow u(2) centered at the particle, such
that n̂ · u(1) = �n̂ · u(2) on its surface, we do not need to compute a representation for
the flow to calculate the e↵ects of the collective image systems.

Velocity Corrections Given the total solute and velocity distributions

c = c(0) + c(1) + c(2) +O
�
"4
�
, u = u(0) + u(1) + u(2) +O

�
"6
�
, (3.25)

the velocity corrections U1 and ⌦1 to the unbounded velocity U0 satisfy

U1 +⌦1 ⇥ r = u(1) + u(2) �M0

�
I � n̂n̂

�
·r

�
c(1) + c(2)

�
(3.26)

on the swimmer’s surface. Since the particle is force-free, the force and torque exerted
by u(2) across r = R must be zero. This is analogous to our application of the reciprocal
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theorem in §2.2, using the boundary velocity distribution us = �u(1)+M0rs

�
c(1) + c(2)

�
,

where rs is the surface gradient
�
I � n̂n̂

�
·r. We apply (2.13) to obtain

U1 =
1

4⇡R2

Z

S

⇥
u(1) �M0rs

�
c(1) + c(2)

�⇤
dS,

⌦1 =
3

8⇡R3

Z

S

n̂⇥
⇥
u(1) �M0rs

�
c(1) + c(2)

�⇤
dS.

(3.27)

Note that u(1) is biharmonic and c(1) is harmonic. Since both are non-singular at the
particle center, they can be Taylor expanded to the surface, where their integrated series
terminate. This yields the simplified expressions

U1 = u(1)(0) +
R2

6
r2u(1)(0)� 2M0

3
rc(1)(0)� M0

4⇡R2

Z

S

rsc
(2)dS,

⌦1 =
1

2

�
r⇥ u(1)(0)

�
� 3M0

8⇡R3

Z

S

r ⇥rsc
(2)dS,

(3.28)

for the leading-order corrections to the motion of a Janus particle near a planar wall.
We can explicitly separate these e↵ects into two categories based on whether they

are induced by the image solute systems (di↵usiophoretic e↵ects) or the image flows
(hydrodynamic e↵ects). Each is examined more closely below.

Di↵usiophoretic E↵ects Wall-induced di↵usiophoresis causes the corrections

U d
1 = �2M0

3
rc(1)(0)� M0

4⇡R2

Z

S

rsc
(2) dS, (3.29)

⌦d
1 = � 3M0

8⇡R3

Z

S

r ⇥rsc
(2) dS. (3.30)

The surface gradient of c(2) in Cartesian coordinates is

(I � n̂n̂) ·rc(2) =
1

32Dh3R

⇢⇥
�A1Rxy cos⇥+ 2(y2 + z2)(2A0h+ A1R sin⇥)

⇤
x̂

+
⇥
A1R(x2 + y2) cos⇥+ 2xy(2A0h+ A1R sin⇥)

⇤
ŷ

+ [z (4A0hx� A1Ry cos⇥+ 2A1Rx sin⇥)] ẑ

�
,

(3.31)
which, when integrated over the sphere surface, yields the average value

Z

S

rsc
(2) dS = �A0R4⇡

3Dh2
x̂+

A1R5⇡

6Dh3
û? +

A1R5⇡

12Dh3
ûk. (3.32)

Substituting (3.21) and (3.32) into (3.29) yields the di↵usiophoretic velocity correction

U d
1 =

M0A0"2

4D
x̂+

3"3

16

⇣
2U?

0 +U k
0

⌘
+O("4). (3.33)

Examining (3.31) reveals the cross product r⇥rsc(2) will integrate to zero on the sphere
surface. Solute e↵ects have no impact on the particle’s rotation at this order, and ⌦d

1 = 0.
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Figure 5: The distribution of solute around the particle at orientation ⇥ = 0 is shown
for unbounded fluid (a) and near a wall (b). In the latter case, confinement limits the
di↵usion of solute from the space between the particle and the wall. The resulting build-
up of solute creates a gradient which drives repulsive motion.

The dominant e↵ect on the particle’s motion is related to the source activity coef-
ficient A0. This demonstrates that concentration gradients can be generated purely by
geometrical asymmetry, as in Michelin and Lauga [5], who explain that confinement lim-
its solute di↵usion relative to the unbounded case. Because of this, the area between
the particle and the wall experiences a higher concentration than the space opposite the
particle, as shown in Fig. 5. This asymmetry drives a repulsion which is independent of
the particle’s orientation. Subdominant e↵ects enhance the particle’s motion.

Hydrodynamic E↵ects Wall-induced hydrodynamic e↵ects yield the velocities

Uh
1 = � "3

8D

�
4U? +U k�+O("6), (3.34)

⌦h
1 =

3"4

16R

�
U k ⇥ r

�
+O("7). (3.35)

The hydrodynamic velocities restrict the swimmer’s motion, opposing the di↵usio-
phoretic e↵ects at the same order. The image flow also induces a rotation of the particle.
Because of symmetry, we need only consider orientations for which U0 ·ŷ � 0. We find the
particle always rotates away from the wall, unless ⇥ = ±⇡/2, where there is no rotation.

Equations of Motion At this point, we have the information required to determine
the particle’s time evolution near a wall. For a swimmer at r0 = hx̂+ yŷ, we identify

dr0
dt

= U (t),
dû

dt
= ⌦(t)⇥ û(t), (3.36)
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Figure 6: Numerically integrated trajectories of spherical Janus swimmers near an infinite
planar wall. All trajectories begin at Y = 0. The activities satisfy A⇤ = 1/2 to recover
the e↵ects of an inert hemisphere swimmer. Particles in the left image are originally
oriented towards the wall, while those on the right are initially parallel or oriented away.

with U (t) = U0 +U d
1 +Uh

1 and ⌦ = ⌦h
1 . After introducing the dimensionless quantities

H = h/R, Y = y/R, ⌧ = tU0/R, and A⇤ = �3A0/4A1, we obtain the following set of
equations presented by Ibrahim and Liverpool [13].

dH

d⌧
=

A⇤

H2
+


�1 +

1

8H3

�
sin⇥,

dY

d⌧
=


1 +

1

16H3

�
cos⇥, (3.37)

d⇥

d⌧
= � 3

16H4
cos⇥.

The largest errors which enter the analysis are O(R4/H4), which reach ⇠1% at H = 3R,
⇠6% at H = 2R and ⇠20% at H = 1.5R.

Discussion

General E↵ects The leading-order e↵ect on a particle is a solute-induced repulsion
from the wall. At lower order, parallel motion is enhanced and normal motion is restricted.
Hydrodynamic e↵ects rotate the particle away from the wall for |⇥| < ⇡/2.

Particle Trajectories These equations can be numerically integrated to compute
swimmer trajectories for various initial conditions, as I have done in Fig. 6. The non-
dimensional source strength A⇤ = 1/2 to recover the behavior of an inert-face swimmer
according to (3.15). Hydrodynamic rotation re-orients positive-mobility swimmers away
from the wall at small H, unless contact is made. Swimmers with negative mobility, not
pictured, are both attracted to the wall and rotated towards it, ensuring a collision.
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Comparison with Numerical Results We compare this analysis with that of
Uspal et al. [4], who investigate the Janus particle near a wall by numerically solving
for the concentration and resulting motion of the particle. Their analysis reproduces the
behavior seen in Fig. 6, but they also observe behavior which this section’s analysis is
unable to explain, since they consider particles with more general surface patterning.
While they, like Ibrahim and Liverpool [13], study a two-hemispheres configuration with
one inert face, they allow the relative size and mobilities of the two faces to di↵er.

In their results, a steady “sliding state,” where the swimmer translates parallel to a
wall at constant orientation, was observed for two classes of positive-mobility particle:
those with small inert-to-active cap size ratios and small inert-to-active mobility ratios.
Since the equations of motion derived here have non-zero d⇥/d⌧ for all |⇥| < ⇡/2, no
such sliding state is possible in this analysis. This is unsurprising, since we assumed
constant mobility and equal cap size.

4 Case Studies, Two Dimensions

In this section, we will consider the two-dimensional analogues for a Janus swimmer in
unbounded fluid and near a wall, as outlined by Crowdy [10]. We will see that exact
solutions can be found for a Janus particle of variable cap size in both environments,
through the use of complex variables and conformal mapping. The confined case will
provide indirect evidence for the existence of the sliding state observed by Uspal et al. [4].

4.1 Unbounded Fluid

In this section, we follow Crowdy [10] to find the swimming speed of a circular Janus
particle in unbounded fluid. The relevant conclusions from previous sections are

U = � 1

2⇡

Z 2⇡

0

us d', (2.14)

us = M
�
I � n̂n̂

�
·rc, (2.24)

r2c = 0, n̂ ·rc = �A

D
, (2.28)

Surface Geometry We parametrize the two-dimensional plane using the complex vari-
able z = x+ iy. Since the previous section established that swimming speed is indepen-
dent of particle size for the fixed-flux boundary condition, we define our swimmer as a
circular particle of unit radius. The surface is given by ei', where ' is the angle from the
symmetry axis û = x̂. We divide this boundary into two curves, C+ and C�, such that

C+ := ei', �✓ < ' < ✓, (4.1)

and C� consists of the remainder of the particle surface, as shown in Fig. 7. We choose
piecewise constant surface activity A and mobility M such that

A =

(
A+ on C+,

A� on C�,
M =

(
M+ on C+,

M� on C�,
(4.2)

and we denote � = ei✓, �⇤ = e�i✓ to be the points at which C+ and C� meet.
Below, we employ a conformal mapping to find the swimming speed, applying residue

calculus to resolve singularities which arise due to the discontinuities at � and �⇤.
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ŷ

✓

Figure 7: The two-dimensional Janus swimmer considered by Crowdy.

Concentration Distribution

Boundary Conditions We introduce a± = �A±/D to rewrite (2.28) as

n̂ ·rc =

(
a+ on C+,

a� on C�.
(4.3)

Crowdy chooses to specify that the particle is not a net source of solute, so that

2✓a+ + 2 (⇡ � ✓) a� = 0 =) a� � a+

⇡
=

a+

✓ � ⇡
. (4.4)

Complex Formulation Since the concentration distribution at low Péclet number
is harmonic, we write it in terms of the complex analytic function w(z),

c(x, y) = Re {w(z)} . (4.5)

Let w = c(x, y) + ic0(x, y), x = (z + z⇤) /2 and y = �i (z � z⇤) /2. Then applying the
chain rule to dw/dz returns the expression

dw

dz
=

1

2

✓
@c

@x
+

@c0

@y

◆
+

i

2

✓
@c0

@x
� @c

@y

◆
, (4.6)

but c and c0 satisfy the Cauchy-Riemann relations, so

dw

dz
=

@c

@x
� i

@c

@y
. (4.7)

This implies that for some complex number zu = v+iw representing a vector u = vx̂+wŷ,

Re

⇢
zu

dw

dz

�
= u ·rc. (4.8)

In this way, we can rewrite the boundary conditions in terms of complex variables.
If the particle surface is parametrized in a counter-clockwise fashion by its arc length s,
then the complex unit tangent is t̂ = dz/ds. The complex unit normal is this quantity
rotated ⇡/2 radians clockwise, n̂ = �i(dz/ds). On the unit circle, n̂ = z and

Re

⇢
z
dw

dz

�
=

(
a+ on C+,

a� on C�.
(4.9)
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Solution for the Normal Gradient Since we assume there exists no solute in
the far-field, and the particle is not a net source, the function w(z) ⇠ O(1/z), implying
z(dw/dz) is analytic and single-valued for |z| > 1. In that case, (4.9) is solved by

z
dw

dz
= a+ � i(a� � a+)

⇡
log ⌘(z), (4.10)

where the function ⌘(z) is the Mobius map

⌘(z) = A
✓

z � �

z � �⇤

◆
, A = ei(⇡�✓), (4.11)

which unfolds the swimmer body onto the real numbers in the ⌘-plane such that C+ and
C� are mapped to the positive and negative real lines, respectively. The points � and �⇤

map to the origin and infinity, and we have chosen the branch of the logarithm so that

Im {log ⌘(z)} =

(
0 on C+

⇡ on C�.
(4.12)

Swimming Speed On the unit circle, the tangent t̂ = iz, so the tangential gradient is

�
I � n̂n̂

�
·rc = t̂t̂ ·rc = izRe

⇢
iz
dw

dz

�
. (4.13)

Substituting (4.10) and (4.13) into (2.24) yields the slip velocity

us =

8
><

>:

izM+(a� � a+)

⇡
log |⌘(z)| on C+,

izM�(a� � a+)

⇡
log |⌘(z)| on C�,

(4.14)

which we substitute into (2.14), obtaining the swimming speed

U = �M+(a� � a+)

2⇡2

Z

C+

log |⌘(z)|dz � M�(a� � a+)

2⇡2

Z

C�
log |⌘(z)|dz. (4.15)

These integrals can be evaluated using residue calculus to find an analytic solution to U .

Residue Calculation Inverting and di↵erentiating (4.11) yields

dz

d⌘
=

A (� � �⇤)

(⌘ �A)2
=: P (⌘), (4.16)

a relation we use to rewrite the integrals within (4.15) in terms of ⌘, finding

U = �M+(a� � a+)

2⇡2

Z 0

1
log |⌘|P (⌘)d⌘ � M�(a� � a+)

2⇡2

Z �1

0

log |⌘|P (⌘)d⌘. (4.17)

Because these integrals contain a pole at ⌘ = A, we calculate the residues

Res [P (⌘)] = lim
⌘!A

d

d⌘
[A(� � �⇤)] = 0,

Res [P (⌘) log ⌘] = lim
⌘!A

d

d⌘
[A(� � �⇤) log ⌘] = � � �⇤ = 2i sin ✓,

Res
⇥
P (⌘) (log ⌘)2

⇤
= lim

⌘!A

d

d⌘

⇥
A(� � �⇤) (log ⌘)2

⇤
= 2(� � �⇤) log=� 4(⇡ � ✓) sin ✓,

(4.18)
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Figure 8: The optimum cap size ✓opt corresponding to maximum velocity for a given ratio
of mobilities M�/M+ is numerically computed for 1) Crowdy’s non-source swimmer and
2) an identical swimmer which can act as a source of solute.

and substitute them into the following relations, simplified from their presentation in
Appendix B of Crowdy [10],

Z 0

1
log |⌘|P (⌘)d⌘ = �i⇡Res [P (⌘) log ⌘] +

1

2
Res

⇥
P (⌘) (log ⌘)2

⇤
= 2✓ sin ✓,

Z �1

0

log |⌘|P (⌘)d⌘ = �1

2
Res

⇥
P (⌘) (log ⌘)2

⇤
= 2(⇡ � ✓) sin ✓.

(4.19)

Combining these relations with (4.17) yields

U = �(a� � a+) sin ✓ [M+✓ +M�(⇡ � ✓)]

⇡2
. (4.20)

Finally, to satisfy the requirement that the particle is not a net source of solute, we apply
the relation (4.4) and find the unbounded swimming speed

U = �A+ sin ✓ [M+✓ +M�(⇡ � ✓)]

D⇡(⇡ � ✓)
. (4.21)

Discussion With this result, we can examine the e↵ects of di↵erent cap sizes and
mobilities in three dimensions, since the two-dimensional case is likely to behave in a
qualitatively similar way. Consider the question of what optimum cap size yields the
maximum velocity for a given activity A+ and mobility ratio � = M�/M+. Numerically
solving (4.21), as I have in Fig. 8, reveals that the optimum configuration for �  1 is
a uniform surface activity a+ punctuated by a single site of absorption at one end. For
� > 1, an optimum cap size ✓opt exists, which approaches ⇡/2 as � approaches infinity.

Since the work of Golestanian et al. [6] established that the unbounded swimming
speed of a Janus particle is unrelated to its net source strength, I temporarily suspended
the no net source prescription and numerically solved (4.20) for a range of � as well. For
a particle with a given activity di↵erence A+ � A�, an optimum cap size ✓opt exists for
all possible �. Showing this analytically in three dimensions would have been much more
di�cult using the formalism of previous sections. In the next section, similar analysis
will suggest indirect evidence for a sliding state.
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Figure 9: The mapping defined in (4.22) maps the annulus pictured above in (b) to the
doubly connected fluid above the wall in (a). The points ↵ and � map to z↵ and z�. In
general, ↵ and � are not symmetric about the x axis in the preimage ⇣-plane.

4.2 Near Infinite Wall

Continuing Crowdy’s analysis, we examine a particle near a wall. By employing the same
methods as in the unbounded case, we find an exact solution which will allow for the
qualitative examination of swimmer behavior in the case of unequal cap sizes.

Wall Geometry and Conformal Mapping Let the wall lie directly on the x-axis,
and consider a nearby, circular particle of radius s, located at the point (0, d). The
problem will be treated within a preimage annulus, parametrized by |⇣| 2 [⇢, 1]. As
shown in Fig. 9, the two regions are related by the Mobius map

z(⇣) = iR

✓
⇣ + 1

⇣ � 1

◆
, (4.22)

where ⇢ and R are given by

⇢ =
d

s
�

s✓
d

s

◆2

� 1, R = d

✓
⇢2 � 1

⇢2 + 1

◆
. (4.23)

The discontinuous points on the particle boundary, now denoted z↵ and z�, satisfy

z↵ = id+ sei✓, z� = id+ si(✓+�), (4.24)

where the parameter ✓ has been redefined to measure the instantaneous tilt angle of the
point z↵ relative to the x̂ axis and � is the cap size of C�. The swimmer velocities are

U = (U, V, 0), ⌦ = (0, 0,⌦). (4.25)

Reciprocal Theorem Each time we have used the reciprocal theorem thus far, we
have done so with regard to an unbounded flow. Now, however, it must be applied with
regard to the geometry at hand, and the dragging flow considered must be a that of an
infinite cylinder being towed or rotated near an infinite wall.
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In a previous paper [17], Crowdy establishes that the relevant dragging problem can
be solved within the preimage ⇣-plane introduced by (4.22), such that the right side of
the general reciprocal theorem (2.10) can be written in two dimensions as

�
I

|z�zd|=s

us · �2 · n̂ ds = �Re

⇢
2µi

I

|⇣|=⇢

u⇤
s

dH
d⇣

d⇣

�
, (4.26)

where µ is the dynamic viscosity and dH/d⇣ is an analytic function depending on which
dragging problem is considered. We will take these functions as given in later sections.

Concentration Distribution

Boundary Conditions We denote the wall as the boundary C0 and specify that
it allows no solute flux, so that the complete set of boundary conditions is

n̂ ·rc =

8
><

>:

0 on C0,

a+ on C+,

a� on C�.

(4.27)

Again, we specify that the particle is not a net source of solute, so that

a��+ a+(2⇡ � �) = 0 =) (a� � a+) = �2⇡a+

�
. (4.28)

and the far-field concentration is O(1/z).

Complex Formulation As in the unbounded case, we write c = Re{w(z)}. Recall
that the complex unit tangent and normal are given by dz/ds and �i(dz/ds). We use
this fact to rewrite (4.27) in the complex form

Re

⇢
�i

dz

ds

dw

dz

�
=

8
><

>:

0 on C0,

a+ on C+,

a� on C�.

(4.29)

We write the unit tangent in terms of ⇣ by applying the chain rule to find

t̂ =
dz

ds
=

dz

d⇣

d⇣

ds⇣

ds⇣
ds

, (4.30)

where the arc length s parameterizes the boundary z(s). In the ⇣-plane, the arc length
s⇣ parameterizes ⇣(s⇣). Finally, ds⇣/ds, the ratio between the two planes’ arc lengths, is
|dz/d⇣|�1. The counter-clockwise and clockwise unit tangents on |⇣| = 1 and ⇢ are

dz

ds
= � i⇣z0(⇣)

|z0(⇣)| on C0,
dz

ds
=

i⇣z0(⇣)

⇢|z0(⇣)| on C+, C�, (4.31)

and we rewrite the boundary conditions (4.29) as

Re

⇢
dw

dz
⇣z0(⇣)

�
=

8
><

>:

0 on C0,

⇢a+|z0(⇣)| on C+,

⇢a�|z0(⇣)| on C�.

(4.32)
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We find the explicit representation for |z0(⇣)| on |⇣| = ⇢ by di↵erentiating (4.22) and
multiplying by the complex conjugate to obtain

z0(⇣) = � 2iR

(⇣ � 1)2
, |z0(⇣)|

���
|⇣|=⇢

= � 2R⇣

(⇣ � 1) (⇢2 � ⇣)
:= X(⇣). (4.33)

As expected, X(⇣) is a real, positive function on |⇣| = ⇢.

Managing Singularities The function on the left side of (4.32) must be analytic
at ⇣ = 1, corresponding to z ! 1, because of the far-field condition w(z) ⇠ O(1/z). At
the same time, we expect logarithmic singularities at ⇣ = ↵, � due to the discontinuous
boundary conditions. To account for these, we define the function

G(⇣) = �X(⇣)


⇢a+ � i⇢(a� � a+)

⇡
log ⌘(⇣)

�
, (4.34)

where we have re-introduced a variant of the ⌘-mapping,

⌘(⇣) = A
✓
⇣ � ↵

⇣ � �

◆
, A = ei�, � =

1

2
arg

✓
�

↵

◆
, (4.35)

which takes |⇣| = ⇢ to the real numbers in the ⌘-plane. We choose the branch of the
logarithm so that C+ and C� are again mapped to the positive and negative real lines.

While Crowdy writes A = ei(⇡��) [10], this is a typographical error. Consider as an
illustration the case where ↵ is in the second quadrant so that its real part is negative,
� = ↵⇤ so that ⇡ = arg(↵) + �, and ⇣ = �↵. In that case,

arg

✓
⇣ � ↵

⇣ � �

◆
= arg

✓
↵

Re {↵}

◆
= arg(↵)� ⇡ = ��. (4.36)

For ⌘(�↵) to lie on the positive real-⌘ line as desired, we must have A = ei�.
The real part of �G(⇣) satisfies the boundary conditions on C+ and C� in (4.32), so

adding G(⇣) to both sides produces the boundary problem

Re

⇢
dw

dz
⇣z0(⇣) +G(⇣)

�
=

8
><

>:

Re {G(⇣)} on C0,

0 on C+,

0 on C�,

(4.37)

where we have transferred the logarithmic singularities on |⇣| = ⇢ to our solution function
so they can be explicitly resolved using residue calculus.

Since G(⇣) has a pole at ⇣ = 1 within X(⇣), we define

J(⇣) = X(⇣)


⇢a+ � i⇢(a� � a+)

⇡
log ⌘(1)

�
, (4.38)

and add it to both sides so that

Re

⇢
dw

dz
⇣z0(⇣) +G(⇣) + J(⇣)

�
=

8
><

>:

Re {G(⇣) + J(⇣)} on C0,

Re {J(⇣)} on C+,

Re {J(⇣)} on C�.

(4.39)
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Note that as ⇣ approaches 1, the sum G(⇣) + J(⇣) satisfies the proportion

G(⇣) + J(⇣) / 1

⇠ � 1
log

✓
⌘(⇣)

⌘(1)

◆
, (4.40)

so the boundary condition on C0 now remains smooth at ⇣ ! 1.
Finally, applying the no net source prescription (4.28), J(⇣) simplifies to

J(⇣) = X(⇣)⇢a+

1 +

2i

�
log ⌘(1)

�
. (4.41)

It can be shown that Im {log ⌘(1)} = �/2. Since X(⇣) was defined to be real on |⇣| = ⇢,
Re{J(⇣)} must vanish on the particle boundary, and the boundary conditions reduce to

Re {I(⇣)} =

(
Re {G(⇣) + J(⇣)} on |⇣| = 1,

0 on |⇣| = ⇢.
(4.42)

where we have defined

I(⇣) :=
dw

dz
⇣z0(⇣) +G(⇣) + J(⇣). (4.43)

Solution As desired, all singularities are confined to the left side of the equation,
where they can be analytically treated. The problem (4.42) can be readily solved as a
modified Schwarz problem, treated in an earlier paper by Crowdy [18]. The solution is

I(⇣) = c0 +
1X

n=1

cn⇣
n +

1X

n=1

c�n⇢n

⇣n
, ⇢ < |⇣| < 1, (4.44)

for some set of coe�cients {cn}. The boundary condition on C0 is known to be smooth
and analytic, so we decompose it into a set of Fourier coe�cients {dn}, satisfying

Re {G(⇣) + J(⇣)}
���
|⇣|=1

=
1X

n=�1
dn⇣

n. (4.45)

Combining (4.44) and (4.45) fixes the coe�cients {cn}, yielding

Re {c0} = d0, cn =
2dn

1� ⇢2n
, c�n = � 2⇢nd⇤n

1� ⇢2n
, n � 1, (4.46)

so that I(⇣) is a known function. At this point, we can compute the slip velocity over
the particle surface, using

dw

dz
⇣z0(⇣) = I(⇣)�G(⇣)� J(⇣). (4.47)

Slip Velocity The slip velocity (2.24) is written in complex form as

us = MRe

⇢
dz

ds

dw

dz

�
dz

ds
. (4.48)
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To find this value, we substitute in the expressions for the complex tangent on |⇣| = ⇢
(4.31), the derivative z0(⇣) and its magnitude |z0(⇣)| = X(⇣) (4.33), and, finally, the
function we have just found (4.47). After taking the complex conjugate, this yields

u⇤
s = M Re

⇢
i(⇣ � 1)(⇣ � ⇢2)

2R⇣
[I(⇣)�G(⇣)� J(⇣)]

�
1� ⇣

⇢2 � ⇣
, (4.49)

which we separate into regular and singular parts

u⇤(r)
s = M Re

⇢
i(⇣ � 1)(⇣ � ⇢2)

2R⇣
I(⇣)

�
1� ⇣

⇢2 � ⇣
, (4.50)

u⇤(s)
s = M Re

⇢
i(⇣ � 1)(⇣ � ⇢2)

2R⇣
[�G(⇣)� J(⇣)]

�
1� ⇣

⇢2 � ⇣
, (4.51)

because of the logarithmic singularities in Re {G(⇣) + J(⇣)} on |⇣| = ⇢. These are revealed
by simplifying the latter integral to obtain

u⇤(s)
s = M Re

⇢
⇢(a� � a+)

⇡
log

✓
⌘(⇣)

⌘(1)

◆�
1� ⇣

⇢2 � ⇣
, (4.52)

and noting ⌘(↵) = 0 and ⌘(�) ! 1.
At this point, Crowdy stipulates a constant mobility M = 1 everywhere on the parti-

cle. While this prescription eliminates the mobility-ratio sliding state observed by Uspal
et al. [4], the smaller solution space greatly simplifies the remaining analysis.

The slip velocity is now a known function on the particle surface. In the next section,
we calculate the particle velocities U and ⌦.

Swimming Speeds As before, we relate the di↵usiophoretic slip velocity to the particle
motion through the reciprocal theorem, which is given by (2.10) and (4.26) to be

U · F 0 +⌦ · T 0 = �Re

⇢
2µi

I

|⇣|=⇢

⇥
u⇤(s)

s + u⇤(r)
s

⇤ dH
d⇣

d⇣

�
. (4.53)

We will apply this to three di↵erent dragging flows: a cylinder moving parallel to a wall, a
cylinder moving perpendicular to a wall, and a cylinder rotating near a wall. The function
dH/d⇣ takes on di↵erent smooth, analytic forms for each of these situations, known from
Crowdy’s past work [17]. The integral on the right side of (4.53) is computed as follows.

Regular Portion The regular slip function u⇤(r)
s on |⇣| = ⇢ can be written as the

Laurent expansion

u⇤(r)
s =

1X

n=0

bn⇣
n + b⇤n

⇢2n

⇣n
, (4.54)

where the {bn} are known coe�cients given the {cn} fixed in (4.46). Since u⇤(r)
s and

dH/d⇣ are both smooth and analytic on |⇣| = ⇢, the integral can be computed by means
of the residue theorem. Doing so reveals that only b0 and b1 contribute to the velocities.
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Singular Portion The singular integral can be evaluated exactly as in the un-
bounded case, by rewriting the integrand as a function of ⌘ and integrating over the real
⌘-line. The resulting integrals take the form

I1 =

Z 0

1
f(⌘) log |⌘|d⌘, I2 =

Z �1

0

f(⌘) log |⌘|d⌘, (4.55)

and can be evaluated using residue calculus as in the unbounded case. Since f(⌘) can
have multiple poles, the relations analogous to (4.19) become more complicated.

Dragging Flows Now, to calculate the velocities U = (U, V, 0) and ⌦ = (0, 0,⌦), we
apply the reciprocal theorem (4.53) to the three dragging flows.

Parallel Motion First, we determine the parallel speed U by considering the cylin-
der being dragged along an infinite wall at unit velocity. From Crowdy [17],

dH
d⇣

=
2Fd

(1� ⇢2)

✓
1 +

(1� ⇢2)

⇣
� ⇢2

⇣2

◆
, Fd = � 1

log ⇢2
. (4.56)

which corresponds to a dragging force

F 0 = (�8⇡µFd, 0, 0) . (4.57)

Evaluating the u⇤(r)
s integral yields the regular velocity contribution

U (r) = Re

⇢
i

4⇡Fd

I

|⇣|=⇢

u⇤(r)
s

dH
d⇣

d⇣

�

= ⇢Re {b1}

=
2a+⇢

�(1� ⇢2)
log

����
1� �

1� ↵

�����
2⇢3a+

�(1� ⇢4)
Re {� � ↵} ,

(4.58)

and evaluating the u⇤(s)
s integral using residue calculus yields the singular contribution

U (s) = Re

⇢
i

4⇡Fd

I

|⇣|=⇢

u⇤(s)
s

dH
d⇣

d⇣

�

=
a+

�

⇢

1� ⇢2


(� � ↵)

✓
1 +

1

↵�

◆�
,

(4.59)

so that the value of U is the sum U (r) + U (s).

Perpendicular Motion Now, we determine the perpendicular speed V by consid-
ering a cylinder moving directly away from a wall at unit speed. From Crowdy [17],

dH
d⇣

= 2Fd

✓
1

⇣
� ⇢2

(1 + ⇢2)⇣2
� 1

1 + ⇢2

◆
, Fd = � i

2(1� ⇢2)/(1 + ⇢2) + log ⇢2
, (4.60)

and the particle drag is
F 0 = (0, 8⇡µiFd, 0) . (4.61)
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The smooth contribution is found to be

V (r) = �Re

⇢
1

4⇡Fd

I

|⇣|=⇢

u⇤(r)
s

dH
d⇣

d⇣

�

= �⇢(1� ⇢2)

(1 + ⇢2)
Im {b1}

= �2a+

�

⇢(1� ⇢2)

(1 + ⇢2)


⇢2

(1� ⇢4)
Im {� � ↵}+ 1

(1� ⇢2)
arg


1� �⇤

1� ↵⇤

��
,

(4.62)

and the singular contribution is

V (s) = �Re

⇢
1

4⇡Fd

I

|⇣|=⇢

u⇤(s)
s

dH
d⇣

d⇣

�

=
a+

�

⇢

1 + ⇢2
Im

⇢
(↵� � 1)

✓
1

↵
� 1

�

◆�
.

(4.63)

As before, V = V (r) + V (s).

Rotation Finally, to compute the angular velocity ⌦, we consider the stationary
cylinder rotated near a wall at unit angular velocity. From Crowdy [17],

dH
d⇣

=
4R⇢2

(1� ⇢2)3

✓
1� ⇢2

⇣2

◆
+

2R

(⇣ � 1)2
, (4.64)

and its corresponding torque is

T 0 =

✓
0, 0,�4⇡s2

(1 + ⇢2)

(1� ⇢2)

◆
. (4.65)

The regular portion is

⌦(r) = �Re

⇢
2µi

T 0
z

I

|⇣|=⇢

u⇤(r)
s

dH
d⇣

d⇣

�

= �b0
s
� 4⇡⇢2

(2⇡ � �)(1 + ⇢2)
Re {b1}

=
4a

s�

⇢4

(1� ⇢4)


log

����
1� �

1� ↵

����+
1

(1 + ⇢2)
Re {� � ↵}

�
(4.66)

and the singular portion is

⌦(s) = �Re

⇢
2µi

T 0
z

I

|⇣|=⇢

u⇤(s)
s

dH
d⇣

d⇣

�

= �2a

s�


log

����
1� ↵

1� �

����+
⇢2

1� ⇢4
Re

⇢
(� � ↵)

✓
1 +

1

↵�

◆��
.

(4.67)

The total angular velocity is ⌦ = ⌦(r) + ⌦(s).
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U

�
C+

C�

Figure 10: For a < 0, the particle moves in the direction of C�. The orientation is
parametrized by �, the tilt angle between the midpoint of C� and the x axis.

Equations of Motion At this point, we determine the time evolution of a two-
dimensional Janus particle near an infinite wall. If the particle is located at the position
(X, Y ), and ✓ is defined as in Fig. 9, then we identify

Ẋ = U, Ẏ = V, ✓̇ = ⌦, (4.68)

where these are the values that have just been determined above. The following are the
equations of motion for the system, as determined by Crowdy [10].

dX

dt
=

a+⇢

�(1� ⇢2)


1� ⇢2

1 + ⇢2
Re {� � ↵}+ Re

⇢
1

↵
� 1

�

�
+ 2 log

����
1� �

1� ↵

����

�
,

dY

dt
=

a+⇢

�(1 + ⇢2)


1� ⇢2

1 + ⇢2
Im {� � ↵}� Im

⇢
1

↵
� 1

�

�
+ 2 arg


1� �

1� ↵

��
, (4.69)

d✓

dt
= � 2a+⇢2

s�(1� ⇢4)


1� ⇢2

1 + ⇢2
Re {� � ↵}+ Re

⇢
1

↵
� 1

�

�
� 1 + ⇢4

⇢2
log

����
1� �

1� ↵

����

�
,

with the parameters ⇢,↵ and � given by

⇢ =
Y

s
�

s✓
Y

s

◆2

� 1, ↵ =
⇢2 � i⇢ei✓

1� i⇢ei✓
, � =

⇢2 � i⇢ei(✓+�)

1� i⇢ei(✓+�)
. (4.70)

Discussion Since we consider a positive-mobility particle, we set a < 0 so that C� will
act as the nose of the swimmer. In that case, � = ✓+�/2, the tilt angle of C�’s midpoint
and the x axis as shown in Fig. 10, is a convenient measure of the swimmer’s orientation.
As before, due to symmetry, we need only consider |�|  ⇡/2. These equations can be
numerically integrated to observe trajectories of the particle, as in previous sections.

Equal Cap Size For equal cap sizes � = ⇡, the behavior witnessed is qualitatively
the same as that shown in Fig. 6. Swimmers which approach the wall either hit in finite
time or re-orient away due to rotation away from the wall in all possible orientations �.

Unequal Cap Size If we allow � 6= ⇡, there do exist orientations with rotation
towards the wall. At any distance d, there exists some critical cap size �crit such that
� < �crit implies the existence of orientations with d✓/dt < 0. This means there also
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Figure 11: (a) The variation of the critical cap size �crit with distance from the wall d is
shown. As d ! s, �crit ! 0, so all orientations begin rotating the particle away from the
wall. (b) For d = 1.5s, the orange dot in (a), the orientation � vs. angular velocity d✓/dt
is displayed for several cap sizes �. If �  �crit, orientations exist with no rotation.

exist orientations for which there is no rotation, demonstrated in Fig. 11, where I have
numerically investigated how �crit varies with d.

While the equations of motion above do not support a sliding state, this can likely
be attributed to the particle not being a net source of solute. The analysis of Ibrahim
and Liverpool [13] showed the only e↵ect of the source strength A0 is to induce repulsion
from the wall. If this conclusion holds in two dimensions, and the particle in Crowdy’s
analysis is allowed to be a net source, a wise choice of A0 could exactly o↵set dY/dt at
the orientation for which d✓/dt = 0, yielding the sliding state observed by Uspal et al. [4].

5 Extension to Other Geometries

At this point, I extend the previous section’s results to other environments by conformally
mapping them to the half plane y > 0, where Crowdy’s solution (4.69) can be applied.
While the process is not rigorous, it could provide insight into confinement e↵ects of these
geometries on Janus swimmers. Below, I list the approximations used to complete the
analysis and present results for a particle near a corner and in a semi-infinite channel.

Boundary Warping Conformal mappings from many regions to the half plane are
well known and easy to manipulate, but they do not generally map a circular particle
boundary to a circle in the half plane. I address this shortcoming by approximating
mapped swimmer boundaries with circular replacements of the same area and centroid,
as shown in Fig. 12. This process introduces an asymmetry which could drive behavior
unrelated to actual particle dynamics. The potential strength of this e↵ect, linked to the
warping undergone by the boundary during the mapping process, can be estimated by
the eccentricity

e =

s

1� r2min

r2max

, (5.1)
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z0c
f(z)

z�

z↵

�

z0�

z0↵�e↵

Figure 12: A mapping f(z) sends the circular particle in the quarter-plane at right to
the solid boundary in the half-plane at left. In the half plane, the swimmer’s boundary
can be approximated by the dashed circle, which shares the mapped boundary’s area and
centroid. The points z↵ and z� map to z0↵ and z0�; note the mapping alters the particle
cap size �. For reference, the eccentricity of the mapped boundary is e = 0.8.

where rmax and rmin are the largest and smallest distances on the true boundary from its
centroid. While the warped boundary is not an ellipse, this quantity is zero for a circle
and grows with the magnitude of warping induced.

Surface Geometry If a mapped particle’s centroid is given by z0c and its area by A,
I calculate the following e↵ective height Ye↵ and radius se↵ to use in Crowdy’s equations,

Ye↵ = Im {z0c} , se↵ =

r
A

⇡
. (5.2)

As before, let z↵ and z� be the points at which C+ and C� meet. If these map to z0↵
and z0�, I define the e↵ective orientation parameter ✓e↵ and cap size �e↵ to be

✓e↵ = arg (z0↵ � z0c) , �e↵ = arg
�
z0� � z0c

�
� arg (z0↵ � z0c) . (5.3)

Boundary Condition At this point, I attempt to define an e↵ective surface activity
a+e↵ on the mapped cap (C+)0. Consider the fixed flux boundary condition: intuitively,
as the relative size of the cap changes due to warping, the solute flux should remain
proportional to the cap size times the activity, implying a+e↵(2⇡ � �e↵) / a+(2⇡ � �).

Another consideration is to require that results of this analysis not change with an
arbitrary scaling of the mapping. This is assured by requiring a+e↵(s/se↵) = a+, so that
the mapped problem is equivalent to a particle of radius s and activity a+, within a
scaling of the geometry and solute concentration. The e↵ective surface activity which
satisfies these relations is

a+e↵ = a+
⇣se↵

s

⌘✓
2⇡ � �

2⇡ � �e↵

◆
. (5.4)

This boundary condition fixes the concentration distribution and slip velocity. In the
following section, we consider how these values relate to motion in the original geometry.

Reciprocal Theorem Because the solute distribution at zero Péclet number is har-
monic, it is conformally invariant. The resulting slip velocity over the particle’s surface
is invariant as well, but the corresponding global flows are not, since their stream func-
tions are not generally harmonic. This implies that the swimming speed, accurate up to
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Figure 13: (a) The numerically simulated trajectory of a two-dimensional Janus particle
near a corner. Orientation is marked by arrowheads at t = 1, 2, etc. The swimmer
re-orients away from confining walls, as has been seen in previous sections. (b) The
magnitude of mapping-induced warping is estimated by the eccentricity e. In this case,
while the warping is never large, it becomes smaller as the particle leaves the corner.

the e↵ects of warping, must be obtained by applying the reciprocal theorem to the slip
velocity and appropriate dragging problem within the original geometry. In general, the
dragging problem in bounded two-dimensional geometries is not easily solved.

For simplicity, I choose to approximate this process by employing Crowdy’s solution
within the half-plane, e↵ectively applying the reciprocal theorem in the new geometry
as though the global flows were invariant. While the results are therefore not rigorous,
the invariance of the slip velocity suggests they could be qualitatively correct, providing
insight into the particle dynamics of the original geometry. The procedure is as follows.

Procedure Given a particle in some geometry, I map the entire region to the upper
half plane and compute the e↵ective values Ye↵, se↵, ✓e↵, �e↵, and ae↵ defined above. By
substituting these into Crowdy’s equations of motion (4.69), I calculate the velocity and
rotation rate of the particle within the half plane. After propagating the mapped particle
one time step forward, I relate the new position and orientatioin to the original geometry
by applying the inverse mapping and calculating the positions of the centroid, z↵ and
z�. Repeating this process for many time steps yields a trajectory. Below, I apply this
procedure to a particle in a corner and a semi-infinite channel.

Corner The first extension of Crowdy’s solution I attempt is the particle near a
corner consisting of walls on the positive x and y axes. The first quadrant is mapped to the
upper half plane by the function f(z) = z2. Using this mapping with the above procedure,
I have simulated the motion of a particle with s = 0.2, a = �1, and � = ⇡, initially at
the position (X, Y ) = (1, 3) and orientation � = �⇡/2. The resulting trajectory is
presented in Fig. 13. As in the half plane case, the particle rotates away from confining
walls; broadly, it is likely that Janus swimmers near corners re-orient away from their
confinement. The warping is never large and falls o↵ with distance from the origin.
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Figure 14: (a) The numerically simulated trajectory of a two-dimensional Janus particle
in a semi-infinite channel. Orientation is marked by arrowheads at t = 2, 4, etc. A
build-up of solute on the particle’s left side appears to continuously orient the swimmer
down the channel. (b) The magnitude of mapping-induced warping is estimated by the
eccentricity e. In this case, the warping is e↵ectively constant, even far from the origin.

Semi-Infinite Channel The second extension is a particle within a semi-infinite
channel, with walls on y = ±1 and x = 0. In this case, the function

f(z) = cosh

✓
⇡(z + i)

2

◆
(5.5)

maps the channel to the upper half plane. Using this mapping, I have simulated the
motion of a particle with s = 0.2, a = �1, and � = ⇡, initially at the position (X, Y ) =
(3, 0.6) and orientation � = �4⇡/5. The resulting trajectory is shown in Fig. 14. As
before, the particle is rotated away from walls. It appears that a build-up of solute on the
particle’s left works to orient the swimmer down the channel. Rather than sinusoidally
swimming about the channel midplane, the particle asymptotically approaches y = 0 as
x increases. The small warping from the mapping is e↵ectively constant.

6 Conclusions and Future Work

Conclusions Janus particles with positive mobility show more complex behavior near
walls than their negative-mobility counterparts, which always make contact in finite time.
The conclusions below describe the dynamics of the former.

Confinement Avoidance The leading-order e↵ect on a Janus particle near a wall is
a normally-directed repulsion which scales with the source part of the swimmer’s surface
activity. In contrast, the unbounded swimming speed and subdominant confinement
e↵ects scale with the dipole portion of the activity. This suggests particle behavior can
be tuned by altering the relative strength of the source and dipole activity coe�cients.
Note that the two parameters are not independent if one of the swimmer faces is inert,
as in the analysis of Ibrahim and Liverpool [13].

In most situations, hydrodynamic reactions induce a rotation away from wall. The
strength of this e↵ect increases sharply as the particle approaches, causing the swimmer
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to rapidly re-orient towards open fluid. Frequently, collisions are avoided by this process.
If the particle faces are equal sizes, the direction of rotation is the same for all positions
and orientations. More generally, if the face with higher surface activity is much larger
than the other, some orientations cause a rotation towards the wall.

For equal cap sizes, the combined repulsion and rotation leads swimmers to generally
avoid confining walls. This suggests particles in bounded environments are likely to
congregate in central, open areas, as seen in the semi-infinite channel shown in Fig. 14.
If this e↵ect holds when multiple swimmers are present, the resulting induced proximity
could cause enhanced or accelerated inter-particle dynamics, such as the formation of
multi-particle structures through clumping [9].

Wall Capture This essay found no stable steady states for particles of equal cap
size. As explained above, the work of Crowdy [10] shows that some orientations of
swimmers with unequal cap sizes cause rotation towards the wall. This implies the
existence of situations in which there is no rotation at all, providing indirect evidence for
the sliding state observed by Uspal et al. [4]. Janus particles with unequal cap sizes may
be susceptible to capture by confining walls, where the swimmer translates steadily along
the boundary. This may be desired; consider a particle which must take the left path at
a fork in a channel. Capture by the left channel wall will yield the correct behavior.

It is likely that particles could be designed with similar specific purposes in mind.
Imagine, for instance, that a Janus swimmer is desired to be captured and translate at
a certain height above a boundary, perhaps releasing medication at the optimal distance
from a capillary wall. The relative sizes of the particle faces could be carefully chosen to
yield a specific orientation at the selected height with no induced rotation. The source
strength of the particle’s activity distribution could be similarly calibrated to exactly
o↵set any resultant motion towards the wall. This process would yield a particle which
behaves exactly as intended.

Future Work

Thermal Noise Throughout the essay, there is no mention of thermal noise, which
continuously works to randomly re-orient swimming particles. The degree to which the
equations of motion derived by Ibrahim and Liverpool (3.37) and Crowdy (4.69) are
robust against this process should be investigated. Of particular interest is the length of
time a particle is expected to remain in the sliding state observed by Uspal et al. [4].

Surface Chemistry While the fixed-flux boundary condition used in this analysis is
convenient, more accurate descriptions of the particle surface chemistry would yield more
realistic swimmer behavior. The surface activity A likely depends on the concentration
of at least one fuel source cfuel. An accurate treatment would consider the global fuel
distribution, and the e↵ects of confinement on its di↵usion would likely have a large
impact on the resulting particle behavior.

Near Wall Behavior While the two-dimensional particle near a wall was solved
exactly in Crowdy’s analysis [10], Ibrahim and Liverpool [13] employed an approximation
in the three-dimensional case which broke down as the particle approached the wall. The
particle trajectories explored in Fig. 6, for instance, feature turning points at positions
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where errors can reach the order of 20% or higher. A lubrication-style analysis, where
derivatives are scaled as in the “inner region” portion of §2.3, could reveal more accurate
behavior when the particle is near the wall.

Unequal Caps in Three Dimensions Ibrahim and Liverpool [13] limited their
analysis to Janus particles of equal cap size and constant mobility, as this configuration is
well approximated by a linear activity function. This approach could be expanded to more
general cap sizes by computing the Legendre coe�cients of the corresponding activity
distributions A and considering higher-order terms of the resulting solute concentration
and bulk flow. As an example, the first three coe�cients for the distribution

A(✓) =

(
A+, 0 < ✓ < ✓0,

A�, ✓0 < ✓ < ⇡,
(6.1)

are given by the following relations

A0 =
1

2

⇥
A+ + A� +

�
A� � A+

�
cos ✓0

⇤
,

A1 =
3

4

�
A+ � A�� sin2 ✓0, (6.2)

A2 =
5

4

�
A+ � A�� cos ✓0 sin2 ✓0,

which recover the correct values for ✓0 = ⇡/2. Note that A2 changes sign depending on
the value of ✓0, suggesting it could be responsible for more complex behavior than that
observed for A0 and A1 at ✓0 = ⇡/2. In particular, this analysis could explicitly reveal
the existence of the sliding state observed by Uspal et al. [4].
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